Comparison of Two Control Programs of the VVER-1000Nuclear Power Unit Using Regression Data Mining Models
ARTICLE PDF

Keywords

VVER-1000, data mining, regression models, nuclear power plant

How to Cite

Foshch, T., Machado, J., Portela, F., Maksimov, M., & MaksimovaО. (2017). Comparison of Two Control Programs of the VVER-1000Nuclear Power Unit Using Regression Data Mining Models. Nuclear and Radiation Safety, (3(75), 11-17. https://doi.org/10.32918/nrs.2017.3(75).02

Abstract

A load-following mode of nuclear power plants (NPP) is a complicated procedure, since there are significant changes in many interrelated processes. In order to show which control program (CP) of NPP is better to use, data mining (DM) techniques can be introduced. This study proposes a DM approach in order to show a possibility of using DM regression models for NPP. The datasets for DM were obtained by simulating two static CP of VVER-1000 NPP in Simulink software of Matlab program package.

https://doi.org/10.32918/nrs.2017.3(75).02
ARTICLE PDF

References

1. Lokhov, A., “Load-Following with Nuclear Power Plants”, NEA Updates, NEA News, No. 29.2, available at: https://www.oecd-nea.org/nea-news/2011/29-2/nea-news-29-2-load-following-e.pdf

2. Technical and Economic Aspects of Load Following with Nuclear Power, OECD, Nuclear Energy Agency, available at: https://www.oecd-nea.org/ndd/reports/2011/load-following-npp.pdf

3. Pelykh, S. M., Tsiselskaya, T. O., Maksimov, M. V., Baskakov, V. E. (2011), “A Method for Stabilizing the Axial Distribution of the Neutron Field in Maneuvering Power of the VVER-1000” [Sposob stabilizatsii aksialnogo raspredeleniia neitronnogo polia pri manevrirovanii moshchnostiu VVER-1000], Nuclear and Radiological Security, No. 1, pp. 27-32. (Rus)

4. Todortsev, Yu., Tsiselskaya, T., Nikolskiy, M. (2013), “Automated Power Control System for an NPP Unit in Power Follow Modes with Constant Coolant Temperature at the Reactor Inlet”, Nuclear and Radiological Security, No. 4, pp. 20-25.

5. Pelykh, S. M., Maksimov, M. V., Nikolskiy, M. V. (2014), “A Method for VVER Fuel Element Cladding Reliability Prediction” [Metod prognozirovaniia nadiozhnosti obolochek tvelov VVER Nuclear Physics and Atomic Energy], No. 15(1), pp. 50-58.

6. Foshch, T., Maksymov, M. V., Nikolskiy, M. V. (2014), “Analysis of the Influence of Methods for Controlling Power Unit with a Pressurized Water Reactor for Axial Offset” [Analiz vliianiia metodov upravleniia moshchnostiu energobloka s vodo-vodianym reaktorom na aksialnyi offset], Eastern-European Journal of Enterprise Technologies, No. 8(68), pp. 19-27. (Rus)

7. Maksymov, M. V., Pelykh, S. M., Baskakov, V. Y., Tsyselska T. O. (2011), “Control Method for Water-Type Reactor Nuclear Power Plant with Changing Reactor Power or External Load” [“Sposib upravlinnia yadernoiu energetychnoiu ustanovkoiu z reaktorom vodianoho typu pry zmini potuzhnosti reaktora abo zovnishnioho navantazhennia”], Patent No. 59039, IPC G21C 7/00. (Ukr)

8. Maksimov, M. V., Beglov, K. V., Tsiselskaya, Т. А. (2012), “A Model of a Power Unit with VVER-1000 as an Object of Power Control”, Odesa National Polytechnic University, No. 38(1), pp. 99-106.

9. Witten, I. H., Frank, E., Hall, M. A. (2011), “Data Mining: Practical Machine Learning Tools and Techniques – 3rd ed.”, Morgan Kaufmann Publishers, Elsevier.

10. Kuechler, B., Vaishnavi, V. (2008), “On Theory Development in Design Science Research: Anatomy of a Research Project”, European Journal of Information Systems, No. 17(5), pp. 489-504.

11. Olson, D., Delen, D. (2008), “Advanced Data Mining Techniques”, Verlag Berlin Heidelberg, Springer.

12. Refaeilzadeh, P., Tang, L., Liu, H. (2009), “Cross-Validation”, Encyclopedia of Database Systems, Springer, pp. 532-538.