Thermophysical Studies for Safety Assessment of Promising Nuclear Power Plants
ARTICLE PDF

Keywords

nuclear reactor, thermophysical studies, nanofluids, helium coolant, supercritical water

How to Cite

Avramenko, A., Kovetska, M., Kravchuk, A., & Kovetska, Y. (2017). Thermophysical Studies for Safety Assessment of Promising Nuclear Power Plants. Nuclear and Radiation Safety, (2(74), 14-19. https://doi.org/10.32918/nrs.2017.2(74).03

Abstract

The paper describes the role of thermophysical studies for safety assessment and improvement of nuclear reactor technologies. The research considers the issues of using nanofluids for core cooling purposes and analyzes heat transfer problems in promising technologies of generation IV reactor designs with helium coolant and supercritical water. Besides, original results of calculations related to degraded heat transfer in seven-rod fuel assembly design with VVER-SKD geometrical parameters were presented.

https://doi.org/10.32918/nrs.2017.2(74).03
ARTICLE PDF

References

1. Sharaievskii, I.G., Fialko, N.M., Nosovsky, A.V., Zimin, L.B., Sharaievskii, G.I. (2016), “Urgent Problems in Thermal Physics of Design-Basis and Severe Accidents at Nuclear Power Plants” [Aktualnyie problemy teplofiziki proektnykh i tiazhelykh avarii yadernykh energoblokov], Nuclear and Radiation Safety, No. 2 (70), pp. 32—36. (Rus)

2. Kliuchnikov, A.A., Sharaievskii, I.G., Fialko, N.M., Zimin, L.B., Sharaievskii, G.I. (2010), “Thermal Physics of NPP Safety: Monograph” [Teplofizika bezopasnosti atomnykh elektrostantsii: Monografiia],Chornobyl, Institute for Safety Problems of Nuclear Power Plants, NASU, 484 p. (Rus)

3. Kliuchnikov, A.A., Sharaievskii, I.G., Fialko, N.M., Zimin, L.B., Sharaievskii, G.I. (2015), “Thermal Physics of Core Reliability” [Teplofizika nadiozhnosti aktivnykh zon: Monografiia], Chornobyl, Institute for Safety Problems of Nuclear Power Plants, NASU, 528 p. (Rus)

4. Yefanov, A.D., Kaliakin, S.G., Sorokin, A.P. (2012), “Thermal Studies to Justify New Generation Nuclear Reactor Designs” [Teplofizicheskiie issledovaniia v obosnovaniie proektov yadernykh reaktorov], Nuclear Energy, V. 112, No. 1, pp. 12—18. (Rus)

5. Antipov, V.G. (2011), “Experimental Determination of Nonequilibrium Boiling Area Boundaries in Steam Generating Channel” [Experimentalnoie opredeleniie granits oblasti neravnovesnogo kipeniia v parogeneriruiushchem kanale], Industrial Thermal Engineering, V. 33, No. 6, pp. 25—31. (Rus)

6. Antipov, V.G. (2015), “Heat Transfer in Nonequilibrium Boiling Area in Vertical Tube” [Teploobmen v oblasti neravnovesnogo kipeniia vody v vertikalnoi trube], Industrial Thermal Engineering, V. 39, No. 3, pp. 16—23. (Rus)

7. Avramenko, A.A., Kondratieva, E.A., Kovetskaia, M.M., Tyrinov, A.I. (2015), “Influence of Regime Parameters on the Enthalpy of Cross Flows between Rod Bundle Cells” [Vliianie rezhimnykh parametrov na entalpiiu poperechnykh potokov mezhdu yacheikami puchka sterzhnei], Industrial Thermal Engineering, V. 37, No. 3, pp. 16—23. (Rus)

8. Kovetskaia, M.M., Kolesnichenko, Yu.M., Bogorosh, A.T. (2007), “Features of Nonstationary Departure from Nucleate Boiling in Vertical Steam Generating Channels” [Osobennosti nestatsionarnogo krizisa teploobmena v vertikalnykh parogeneriruiushchikh kanalakh], Industrial Thermal Engineering, V. 29, No. 1, pp. 43—48. (Rus)

9. Kovetskaia, M.M., Domashev, V.E., Kovetskaya, Yu.Yu. (2012), “Study of Departure from Nucleate Boiling in Steam Generating Channel at Power Surge” [Issledovaniie krizisa teploobmena v parogeneriruiushchem kanale pri nabrose moshchnosti], Industrial Thermal Engineering, V. 34, No. 6, pp. 53—57. (Rus)

10. Dolinsky, A.A., Kovetskaya, M.M., Skitsko, A.I., Avramenko, A.A., Basok, B.I. (2008), “Nonstationary Departure from Nucleate Boiling in Annular Dispersed Flows”, Journal of Engineering Thermal Physics, V. 17, No. 2, pp. 126—129.

11. Avramenko, A.A., Basok, B.I., Dmitrenko, N.P., Kovetskaya, M.M., Tyrinov, A.I., Davydenko, B.V. (2013), “Renormalization Group Analysis of Turbulence: Monograph” [Renormalizatsionno gruppovoi analiz turbulentnosti: Monografiia], Kyiv, Express Publishing House, 300 p. (Rus)

12. Skitsko, A.I., Kovetskaya, M.M., Tyrinov, A.I. (2013), “Numerical Study of Heat and Mass Transfer in a Vertical Steam Generating Channel under the Influence of Disturbing Factors” [Chislennoie issledovaniie teplomassoperenosa v vertikalnom parogeneriruiushchem kanale pod vliyaniiem vozmyshchaiushchikh faktorov], Industrial Thermal Engineering, V. 35, No. 6, pp. 9—15. (Rus)

13. Kovetskaya, M.M., Kondratieva, E.A., Skitsko, A.I. (2014), “Effect of Uneven Heat Load on Local Flow Characteristics during Water Flow in Steam Generating Channels and Fuel Assemblies” [Vliianiie neravnomernosti teplovoi nagruzki na lokalnyie kharakteristiki potoka pri techenii vody v parogeneriruiushchikh kanalakh i teplovydeliaiushchikh sborkakh], Industrial Thermal Engineering, V. 36, No. 3, pp. 38—44. (Rus)

14. Dmitriiev, A.S. (2011), “Thermophysical Problems of Nanoenergy. Part 2” [Teplofizicheskiie problemy nanoenergetiki. Chast 2.], Heat and Power Engineering, No. 4, pp. 29—36. (Rus)

15. Ramesh, G., Prabhu, N.K. (2011), “Review of Thermo-Physical Properties, Wetting and Heat Transfer Characteristics of Nanofluids and Their Applicability in Industrial Quench Heat Treatment”, Nanoscale Research Letters, No. 6, рр. 1—15.

16. Bang, I.C., Chang, S.H. (2005), “Boiling Heat Transfer Performance and Phenomena of Al2O3 — Water Nanofluids from a Plain Surface in a Pool”, International Journal of Heat and Mass Transfer, No. 48, pp. 2407—2419.

17. Wang, X.Q., Mujumdar, A.S. (2007), “Heat Transfer Characteristics of Nanofluids: a Review”, International Journal of Thermal Sciences, No. 46, pp. 1—19.

18. Das, S.K., Choi, S.U.S., Patel, H.E. (2006) “Heat Transfer in Nanofluids — A Review”, Heat Transfer Engineering, No. 27(10), pp. 3—19. 19. Kim, H., Buongiorno, J., Hu, L.W., McKrell, T. (2010), “Nanoparticles Deposition Effects on the Minimum Heat Flux Point and Quench Front Speed During Quenching in Water-Based Alumina Nanofluids”, International Journal of Heat and Mass Transfer, No. 53, pp. 1542—1553.

20. Hadad, K., Hajizadeh, A., Jafarpour K., Hanapol, B.D. (2010), “Neutronic Study of Nanofluids Application to VVER-1000”, Annals of Nuclear Energy, V. 37, No. 11, pp. 1447—1455.

21. Avramenko, A.A., Shevchuk, V.I., Tyrinov, A.I., Blinov, D.G. (2014), “Heat Transfer at Film Condensation of Stationary Vapor with Nanoparticles near a Vertical Plate”, Applied Thermal Engineering, No. 73, pp. 389—396.

22. Avramenko, A.A., Tyrinov, A.I. (2015), “Heat Transfer at Film Condensation of Moving Vapor with Nanoparticles over a Flat Surface”, International Journal of Heat and Mass Transfer, No. 82, pp. 316—324.

23. Avramenko, A.A., Tyrinov A.I. (2015), “Heat Transfer in Stable Film Boiling of a Nanofluid Over a Vertical Surface”, International Journal of Thermal Sciences, No. 92, pp. 106—118.

24. Avramenko, A.A., Shevchuk, I.V., Abdallah, S., Blinov, D.G., Harmand, S., Tyrinov, A.I. (2016), “Symmetry Analysis for Film Boiling of Nanofluids on a Vertical Plate Using a Nonlinear Approach”, Journal of Molecular Liquids, 223, pp. 156—164.

25. Pioro, I., Kirillov P. (2013), “Generation IV Nuclear Reactors as a Basis for Future Electricity Production in the World”, available at: http://www.formatex.info/energymaterialbook/book/, pp. 818—830.

26. Kovetskaya, M.M., Dmitrenko, N.P., Skitsko, A.I., Kondratieva, E.A. (2014), “Heat Transfer Processes in Flow of Helium and Supercritical Water in a Fuel Assembly” [Protsessy teploobmena pri techenii geliia i vody sverkhkriticheskogo davleniia v teplovydeliaiushchei sborke], Industrial Thermal Engineering, V. 36, No. 2, pp. 46—53. (Rus)

27. Kirillov, P.L. (2008), “Water-Cooled Reactors with Supercritical Water” [Vodookhlazhdaiemyie reaktory na vode sverkhkriticheskikh parametrov], Heat and Power Engineering, No. 5, pp. 2—5. (Rus)

28. Cao, L., Oka, Y., Ishiwatari, Y., Shang, Z. (2008), “Core Design and Subchannel Analysis of a Superfast Reactor”, Journal of Nuclear Science and Technology, V. 45, No. 2, pp. 138—148.

29. Silin, V.A., Semchenkov, Yu.M., Alekseev, V.V., Mitkin, V.V. (2010), “Study of Heat Transfer and Flow Resistance for Supercritical Water Flow in Relation to Reactor Facilities” [Issledovaniie teploobmena I gidravlicheskogo soprotivleniia pri techenii vody sverkhkriticheskikh parametrov primenitelno k reaktornym ustanovkam], Nuclear Energy, V. 108, No. 6, pp. 340—347. (Rus)

30. Smirnov, V.P., Papandin, M.V., Loginov, A.Ya., Vanyukova, G.V., Afonin, S.Yu. (2011), “Application of CFD — Code for Heat Transfer Calculation in the Reactor with Supercritical Parameters” [Primeneniie CFD-koda k raschiotu teploobmena v reaktore s sverkhkriticheskimi parametrami], Nuclear Energy, V. 111, No. 4, pp. 196—201. (Rus)

31. Avramenko, A.A., Kondratieva, E.A., Kovetskaya, M.M., Tyrinov, A.I. (2013), “Hydrodynamics and Heat Trasnfer of Supercritical Water Flow in Vertical Fuel Assembly” [Gidrodinamika i teploobmen potoka vody s sverkhkriticheskimi parametrami v vertikalnoi sborke teplovydeliaiushchikh elementov], Journal of Engineering Physics, V. 86, No. 4, pp. 760—767. (Rus)

32. Aleksandrov, A.A., Orlov, K.A., Ochkov, V.F. (2009), “Termophysical Properties of Working Substances of Power System: Monograph” [Termofizicheskiie svoistva rabochikh veshchestv teploenergetiki: Monografiia], MEI Publishing House, Moscow, 224 p.(Rus)