Gamma-Spectrometric Determination of the Content and the Mass of Uranium Isotopes in Samples of Unknown Composition and Products of the Nuclear Fuel Cycle
ARTICLE PDF

Keywords

uranium bearing material, in situ gamma-spectrometry, mass of uranium isotopes, uranium content in the matrix, absolute detection efficiency

How to Cite

Kutnii, D., & Vanzha, S. (2016). Gamma-Spectrometric Determination of the Content and the Mass of Uranium Isotopes in Samples of Unknown Composition and Products of the Nuclear Fuel Cycle. Nuclear and Radiation Safety, (4(72), 52-56. https://doi.org/10.32918/nrs.2016.4(72).08

Abstract

The results of the uranium isotopes masses and content determination in depleted and low enriched uranium bearing samples using gamma-spectrometric data and iterative method were presented in the paper. Powders of UO2 and U3O8, compact products on their basis, metal uranium and scrap with an enrichment by the isotope 235U from 0,3 to 19,9 % were used as test samples. The sample mass ranged from tens of grams to several kilograms. Gamma-spectrometric data were processed using commercial software packages by Canberra Company: Genie 2000, MGAU, ISOCS and GeometryComposer. The proposed method provides a satisfactory correlation between the experimental and calculated data and allows estimating the quantitative characteristics (enrichment, mass of isotopes, uranium content in the matrix) of uranium bearing samples with different physical shape and chemical composition.

https://doi.org/10.32918/nrs.2016.4(72).08
ARTICLE PDF

References

1. Boiko, V.I., Zherin, I.I., Karataev, V.D., Nedbailo, Yu.V., Silaev, M.E. (2011), “Methods and Devices for Measurement of Nuclear and Other Radioactive Material: Textbook” [Metody i pribory dlia izmereniia yadernykh i drugikh radioaktivnykh materialov : Ucheb. posobie], Tomsk Polytechnic University, Tomsk, 356 p. (Rus)

2. Semenov, A.O., Kuznetsov, M.S., Zakharov, A.S., Zaplatkina, D.S. (2015), “Reducing an Error of Gamma-Spectrometric Measurements of Enrichment of Nuclear Materials” [Snizheniie pogreshnosti gammaspektrometricheskikh izmerenii obogashcheniia yadernykh materialov], Young Scientist, No. 10, pp. 309-312. (Rus)

3. NP 306.7.120-2006. (2006), Regulations on the System of Measurement of Nuclear Materials. [Polozhennia pro systemu vymiriuvan yadernykh materialiv], State Nuclear Regulatory Committee of Ukraine, Kyiv, 12 p. (Ukr)

4. “Ulba Metallurgical Plant. Uranium-Bearing Products: Protoxide-Oxide of Natural Uranium” [Ulbinskii metallurgicheskii zavod. Uransoderzhashchaia produktsiia: zakis-okis prirodnogo urana], available at: http://www.ulba.kz/ru/production11.htm (Rus)

5. “Ulba Metallurgical Plant. Uranium-Bearing Products: Powders of Ceramic Grade Uranium Dioxide” [Ulbinskii metallurgicheskii zavod. Uransoderzhashchaia produktsiia: poroshki dioksida urana keramicheskogo sorta], available at: http://www.ulba.kz/ru/production12.htm (Rus)

6. Gunnik, R., Ruther, W., Miller, P., Goerten, J., et al. (1994), “MGAU: A New Analysis Code for Measuring U-235 Enrichments in Arbitrary Samples”, Preprint UCRL-JC-114713, LLNL, Livermore, USA, pp. 1-4.

7. Vo, D.T., Sampson, Th.E. (1999), “Uranium Isotopic Analysis with the FRAM Isotopic Analysis Code”, Report No. LA-13580, LANL, Los Alamos, USA, pp. 1-24.

8. Kutnii, D.V., Telegin, Ju.N., Odeychuk, N.P., Mikhailov, V.A., Tovkanets, V.E. (2009), “Determination of Uranium Materials Enrichment by Gamma-Spectrometric Methods” [Opredeleniie obogashcheniia uranovykh materialov gamma-spektrometricheskimi metodami], Problems of Atomic Science and Technology, Series, Physics of Radiation Damage and Radiation Material, No. 4-2, pp. 256-262. (Rus)

9. Harb, S., El-Kamel, A., El-Mageed, A., Abbady, A., Rashed, W. (2008), “Concentration of U-238, U-235, Ra-226, Th-232 and K-40 for Some Granite Samples In Eastern Desert of Egypt”, Proceedings of the 3-rd Environmental Physics Conference, Aswan (Egypt), pp. 109-117.

10. Kutnii, D. V., Vanzha, S. A., Zyma, G. V., Mikhailov, V. A., Goncharov, I. G. “In Situ Gamma Spectrometry of Radioactive Materials” [In Situ gamma-spektrometriia radioaktivnykh materialov], Journal of Kharkiv National University, Series: Kernels, Particles, Fields, No. 969, pp. 54-61. (Rus)

11. Nizhnik, V., Belian, A., Shephard, A., Lebrun, A. (2011), “In situ Object Counting System (ISOCSTM) Technique: A Cost-Effective Tool for NDA Verification in IAEA Safeguards”, Proceedings of the 2-nd International Conference on Advancement in Nuclear Measurements Method and their Applications, Ghent (Belgium), pp. 1-5.

12. Bosko, A., Menaa, N., Spillane, T., Bronson, F., Venkataraman, R., Russ, W., Mueller, W., Nizhnik, V. (2011), “Efficiency Optimization Employing Random and Smart Search Using Multiple Counts and Line Activity Consistency Benchmarks”, Proceedings of the 37-th Annual Radioactive Waste Management Symposium, Phoenix (Arizona, USA), pp. 3063-3072.

13. Kutniy, D., Vanzha, S., Mikhaylov, V., Belkin, F. (2011), “Optimization of ISOCS Parameters for Quantitative Non-Destructive Analysis of Uranium in Bulk Form”, Book of abstracts of American Geophysical Union Meeting (AGU-2011), San-Francisco (USA), p. 1185.