Application of RELAP5/MOD3.2 Cladding Deformation Model for VVER-1000 Fuel in Design-Basis Accident Analysis
ARTICLE PDF

Keywords

cladding deformation, cladding rupture, RELAP5/MOD3.2, double-ended cold leg break, design-basis accident analysis

How to Cite

Vorobyov, Y., Zhabin, O., & Frankova, M. (2016). Application of RELAP5/MOD3.2 Cladding Deformation Model for VVER-1000 Fuel in Design-Basis Accident Analysis. Nuclear and Radiation Safety, (3(71), 19-22. https://doi.org/10.32918/nrs.2016.3(71).04

Abstract

The paper presents applicability of built-in RELAP5/MOD3.2 cladding deformation model for VVER-1000 fuel with cladding of Zr+1 % Nb alloy. Experimental data and simplified model of fuel assembly channel of the core are used for this purpose. The model applicability is tested for the hot channel blockage after cladding swelling and rupture in the interval of temperatures from 600 to 1200°С and interval of pressures from 1 to 12 MPa. It is demonstrated that RELAP5/MOD3.2 builtin model of cladding deformation can be applied to VVER-1000 cladding of Zr+1%Nb alloy rupture estimation only in the certain limited range of parameters. The analysis of RELAP5/MOD3.2 cladding deformation model parameters influence on the peak cladding temperature in double-ended cold leg break was performed. The paper presents recommendations on the use of RELAP5/MOD3.2 built-in cladding deformation model in the design basis accident analysis of VVER-1000 reactors.

https://doi.org/10.32918/nrs.2016.3(71).04
ARTICLE PDF

References

1. RELAP5/MOD3 Code manual, Vol. I, Code Structure, System Models and Solution Methods, Idaho, 1995, 414p., NUREG/CR-5535. INEL-95/0174. (Formerly EGG-2596).

2. Vorobyov, Yu.Yu., Zhabin, O.I. (2015), “Applicability Verification of Cladding Deformation Model in RELAP5/MOD3.2 Code for VVER-1000 Fuel” [Otsenka primenimosti modeli deformatsii obolochek tvel raschetnogo koda RELAP5/MOD3.2 dlia topliva reaktorov VVER-1000], Nuclear and Radiation Safety, No. 2 (50), pp. 13—19. (Rus)

3. Logvinov, S.A., Bezrukov, Yu.A., Dragunov, Yu.G. (2004), “Exprimental Justification of Thermalhydraulic Reliability of VVER-1000 Reactors” [Eksperimental’noe obosnovaniie teplogidravlicheskoi nadiozhnosti reaktorov VVER-1000], Moscow, 2004, 254 p. (Rus)

4. Experimental Database of E110 Claddings under Accident Conditions, Budapest, 2007, 103p., AEKI-FRL-2007–123-01/01.

5. Fuel Behaviour under Transient and LOCA Conditions. Proceedings of a Technical Committee Meeting Held in Halden, Norway, 10–14 September 2001, Vienna, 2002, 294 p., IAEA-TECDOC-1320.

6. Development of Multipurpose Thermohydraulic Four-Looped Model of NPP with VVER-1000/320. Detailing the Model Main Components (Final Stage): R&D Report [Zvit pro naukovo-doslidnu robotu. Rozrobka bahatotsiliovoi teplohidravlichnoi modeli YaPVU iz VVER-1000/320. Detalizatsiia osnovnykh komponentiv modeli], SSTC NRS, Kyiv, 2010, No. 0109U008229. (Ukr)

7. Reactor V-320. Technical Description and Information on Safety. Chapter 31: Justification of Safe Operation of V-320 Reactor with Core with Alternative Fuel Assemblies for NPPs of Ukraine and Bulgaria (with Notice of Change No. 320.3590) [Reaktornaia ustanovka V-320. Tekhnicheskoie opisaniie i informatsiia po bezopasnosti. Glava 31: Obosnovaniie bezopasnoi ekspluatatsii reaktornoi ustanovki V-320 s aktivnoi zonoi s teplovydeliaiushchimi sborkami alternativnymi na energoblokakh AES Ukrainy i Bolgarii (s izveshcheniem ob izmenenii No. 320.3590], OKB “Gidropress”, Moscow, 2003, 260 p., Inv. No. 320.00.00.00.000.D61. (Rus)